
46b-R194 032 FASTER SCALING ALGORITHMS FOR NETWORK PROBLENS(U) 1/1
PRINCETON UNIV NJ DEPT OF COMPUTER SCIENCE
H N GABON ET AL. RUG 87 CS-TR-11l-87 NGGG14-8?-K-0467

UNCLASSIFIED F/G 2/4NL

MEOMIEEEllEllllllllE

liii ~ ~ 2.2-

I 140

IIIIL2 5-..111111'.25 II J4 .

,.

I."

MICROCOPY RESOLUTION TEST CHARI

1W At1, "'NnA.R[DIq1 9.

%

lk

% %

%oIl

A

wh -.

S--'

0

Priceton University

FASTER SCALING ALGORITHMS FOR NETWORK PROBLEMS

I__ Harold N. Gabow

Robert E. Tarjan

CS-TR-1 11-87

August 1987

DTIC
ifELECTEKt

Department 1 01 o a9

OfD
Computer Science

: D rrib L -n '

I SV5

8 3 1.5 31-1-2

b

FASTER SCALING ALGORITHMS
FOR NETWORK PROBLEMS

Harold N. Gabow

Robert E. Tarjan

CS-TR-1 11-87

August 1987

DTICSELECTE
JUNO0 11988of

D a

'.

.-
A.

a.a

-,
o

SDT!IBUTIO . .. "-

Approved toT ibhc reb,an ied
Dishtibul Unh ited

' ',' . ', i:'l " -'," %, ,%, '. . .,% ,, "w %. I. ". "- " "- - - " " - -" " -- - " " " "-" "-" " - " -- "- - -

IM A - -c- K

Faster Scaling Algorithms for Network Problems brc

Harold N. Gabowl Robert E. Tarjan2

Department of Computer Science Computer Science Department

University of Colorado Princeton University --

Boulder, CO Princeton, NJ 08544 \,T C CIA,

and r
AT&T Bell Laboratories

Murray Hill, NJ 07974

August 8, 1987

Abstract.

This paper presents algorithms for the assignment problem, the transportation problem and the

minimum cost flow problem of operations research. The algorithms find a minimum cost solution,

but rtm in time close to the best-known bounds for the corresponding problems without costs. For

example, the assignment problem (equivalently, minimum cost matching on a bipartite graph) can

be solved in O(,/Vim log(nN)) time, where n, m and N denote the number of vertices, number

of edges and largest magnitude of a cost; costs are assumed to be integral. The algorithms work

by scaling. As in the work of Goldberg and Tazja [Go, GoT87a-b],in each scaled problem an

approximate optimum solution is found, rather than an exact optimum.

=I.

'I,,

Research supported in part by NSF Grant No. MCS-8302648 and AT&T Bell Laboratories.
2 Research supported in part by NSF Grant No. DCR-8605962 and ONR Contract No. N00014-

87-K-0467. .

0

1. Introduetlon.

Many problems in operations research involve minimizing a cost function defined on a bipartite

or directed graph. A simple but fundamental example is the assignment problem. This paper

gives algorithms for such problems that run almost as fast as the best-known algorithms for the

corresponding problems without costs. For the assignment problem, the corresponding problem

without costs is maximum cardinality bipartite matching.

The results are achieved by scaling the costs. This requires the costs to be integral-valued.

Further, for the algorithm to be efficient, costs should be polynomially-bounded in the number

of vertices, i.e., nO(l). These requirements are satisfied by a large number of problems in both

theoretical and practical applications.

Table I summarizes the results of the paper. The parameters describing the input are specified

in the caption and defined more precisely below. The first column gives the problem and the

best-known strong-polynomial time bound. Such a bound comes from an algorithm with run time

independent of the size of the numbers (assuming the uniform cost model of computation [AHU]).

The second column gives the time boundr achieved in this paper by scaling. The table shows

that significant speed-ups can be achieved through scaling. Further it will be seen that the scaling

algorithms are simple to program. Now we discuss the specific results.

The assignment problem is to find a minimum cost perfect matching on a bipartite graph. The

strong polynomial algorithm is the Hungarian algorithm fK55,K56 implemented with Fibonacci

heaps (FT]. This algorithm can be significantly improved when all costs are zero. Then the problem

amounts to finding a perfect matching. The best-known cardinality matching algorithm, due to

Hopcroft and Karp, runs in time O(Vnm) [HK]. The new time bound for the assignment problem

is just a factor lognN more than this. The algorithm is similar to the Hopcroft-Karp cardinality

algorithm and appears simple enough to be useful in practice.

The new algorithm improves the scaling algorithm of [G8Ja], which runs in time

O(nS/4m log N). The improvement comes from a different scaling method. The algorithms of IGSa]
compute an optimum solution at each of log N scales. The new method computes an approximate

optimum at each of log nN scales; using log n extra scales ensures that the last approximate op- &
timum is exact. The appropriate definition of approximate optimum is due to Bertsekas [Ber86].

The new approach to scaling was recently discovered by Goldberg and Tarjan for the minimum cost

flow problem [Go, GoT87a-b]. Their minimum cost flow algorithm solves the assignment problem

in time O(nmlog(nN)), which this paper improves. Bertsekas [Ber87) gives an algorithm for the

I,

assignment problem that also runs sequential time O(nrn Iog(nN)), and in practice appears to run

faster on parallel machines.

The assignment algorithm extends to other network problems. Variants of minimum cost

perfect matching (such as minimum cost matching) can be done in the same time bound. The

linear programming dual variables for perfect matching can be found from the algorithm. This

gives a solution to the shortest path problem when negative edge lengths are allowed. The table

entry for the degree-constrained subgraph problem is just a factor log nN more than the bound of

JET] for the corresponding problem without costs, namely the problem of maximum flow on a 0-1

network. These bounds improve [G8Sa] in a manner analogous to matching.

The table entry for the transportation problem is a good bound when total supply and demand

(U) is small. The key fact for this bound is the low total augmenting path length for the assignment

algorithm; this fact generalizes the bounds of [ET] for cardinality matching and 0.1 network flow.

The entry for minimum cost flow is a double scaling algorithm- it scales edge capacities, and at each

scale solves a small transportation problem by the above cost-scaling algorithm. This algorithm is

not as good asymptotically as the recent bound of Goldberg and Tarjan, O(nm log(n 2/m) log(nN))

[GoT87b]. The latter is just a factor log nN more than the best bound for maximum value flow

[GoT86]. However the double scaling algorithm may be more useful in practice, since it requires

fewer data structures. Furthermore it generalizes to allow the cost of an edge to be an arbitrary

convex function of the flow in the edge; the time bound is unchanged, as long as the cost for a given

flow value can be computed in 0(1) time. The last table entry, for the Chinese postman problem,

is a consequence of the mincost flow algorithm. The algorithm scales capacities but the bound is

strongly polynomial.

Section 2 presents the matching algorithm and its analysis, including facts used in the general-

isations. Section 3 presents the extensions to more general network flow problems. Section 4 gives I

brief concluding remarks. This section closes with definitions from graph theory; more thorough
treatments are in IL, T83].

We use interval notation for sets of integers. Thus for integers i andj,

[i..] - (klk is an integer, i:5 j:5 k), ji..J) - (klk is an integer, i:5 j < k), etc. The function log

a denotes logarithm to the base two.

For a graph G, V(G) and E(G) denote the vertex set and edge set, respectively. The given

graph G is bipartite and has bipartition Vo, V (so V(G) partitions into VO and V1, and any edge

joins VO to VI). The given graph G has rn edges; in Section 2, n = IVo[I IVII (we assume

without los of generality that the two sets of the bipartition hmve equal cardinality); in Section 3,

2

= V(G)I. If H is a subgraph of G, an H-edge is an edge in H and a non-H-edge is not in H. When .4.

an auxilary graph G' is constructed from the given graph G, G-edge refers to an edge of G' that

represents an edge of G. We use this term without explicit comment only when the representation

is obvious (vw e E(G) is represented by v'w' where V' and w' are obvious representatives of v and

w). We say path Penda with edge vw if is at an end of P and further, v is an endpoint of P.

A matching on a graph is a set of vertex-disjoint edges. Thus a vertex v is in at most one
matched edge v,'; V is the mate of v. A free vertex has no mate. A mazimum cardinatity matching

has the greatest number of edges possible; a perfect matching has no free vertices (and is clearly

maximum cardinality). An alternating path (cycle) for a matching is a simple path (cycle) whose

edges are alternately matched and unmatched. An augmenting path P is an alternating path joining

two distinct free vertices. Augmenting the matching along P means enlarging the matching M to

MeP, thus giving a matching with one more edge. Suppose each edge e has a numeric cost c(e); in
this paper costs are integers in [-N..NJ unless stated otherwise. The cost c(S) of a set of edges S is

the sum of the individual edge costs. A minimum (mazimum) perfect matching is a perfect matching

of smallest (largest) possible cost. The assignment problem is to find a minimum perfect matching

on a bipartite graph. More generally, a minimum cost maximum cardinahty matching is a matching

that has the greatest number of edges possible, and subject to that restriction has minimum cost

possible. (The phrase 'minimum cost maximum cardinality set" can be interpreted ambiguously.

In this paper it refers to a set that has maximum cardinality subject to any other restrictions that

have been mentioned, and among such sets ha minimum cost possible). A minimum coat matching

is a matching of minimum cost (its cardinality can be any value, including zero).

A multigraph has a set of edges E(G), where each edge e has an integral multiplicity u(e) (i.e., ,
there are u(e) parallel copies of e). The size parameter m is the number of edges, m = JE(G); ?n

counts multiplicities, i.e., in = F(u(e)le E E(G)}; M is the maximum edge multiplicity. (In a graph

M = 1). When each vertex v has associated nonnegative integers .(v) and u(V), a degree-constrained

subgraph (DCS) is a subgraph where each vertex has degree in [e(v)..u(v)J. It is convenient to use

both set notation and functional notation for a DCS. Thus we use a capital letter D to denote a

DCS, and the corresponding lower case letter d to denote two functions defined by D: for an edge

e, d(e) denotes the multiplicity of e in D, and for a vertex v, d(v) denotes the degree of v in D, i.e.,

d(v) = E{d(vw) vw E E(G)). Hence d(e) _5 u(e) and tv) 5 d(e) 5 u(v). The deficiency of DOS

D at vertex v is O(v, D) = u(v) - d(w). In a perfect DCS each deficiency is zero. The size of the

DCS is measured by U = F{u(v)v C V) (so U is twice the number of edges in a perfect DCS).

When edges e have costs the usual assumption is that each copy of e has the same cost, denoted

3

c(e). When this assumption fails we use cost functions, defined in the text. Other definitions for

DCS- e.g., minimum perfect DCS, minimum coat mnaimum cardinaaity DCS, minimum cost DCS,

follow by analogy with matching.

The transportation problem is to find a minimum cost perfect DOS in a bipartite multigraph
where all edges have infinite multiplicity; alternatively if M is the maximum degree constraint, all

multiplicities are M. If some multiplicities are less than M the problem is a capocitated transports-
tio problem. (The usual definition of the transportation problem allows nonnegative real-valued

degree constraints and edge multiplicities (both given multiplicities and those in the solution). This

paper deals with the integral case of this problem. Note that if the given degree constraints and

multiplicities are rational, they can be scaled up to integers. Also note that no loss of generality

results from the constraint in this paper that the solution to the transportation problem has in-

tegral multiplicities- such an optimum solution always exists when the given degree constraints

and multiplicities are integral [L]. Finally note that in our terminology the minimum perfect DCS

problem is the same as the capacitated transportation problem).

Next consider a directed graph G with nonnegative edge costs. The directed Ckinese post-

man problem is to find a multiplicity for each edge of G so the corresponding multigraph M is

Eulerian, or if this is not possible M decomposes into the fewest possible number of open paths,

and subject to this restriction, M has the smallest cost possible [PS]. This amounts to the fol-

lowing problem: Let indegree(v) and outdegree(v) be the number of edges directed to v, and

from v, respectively. Call vertex v a start verte: if indegree(v) > outdegree(v), an end vertez

if indegree(v) < outdegree(v), and otherwise an intermediate vertez. The problem is to find a

minimum cost, maximum cardinality set of paths P that start only at start vertices, end only at

end vertices, each start vertex v starts at most indegree(v) - outdegree(v) paths, and each end

vertex v ends at most outdegree(v) - indegree(v) paths. (The given graph G becomes an Eule-

rian multigraph if P contains p paths, for p = E{indegree(v) - outdegree(v)lv a start vertex) i

{outdegree(v) - indegree(v)]v an end vertex)).- S

2. Matching and extensions.

Section 2.1 presents our algorithm to find a minimum perfect matching on a bipartite graph.

Section 2.2 gives extensions to other versions of matching, some facts about the algorithm needed

in Section 3, and our shortest path algorithm. In this section n denotes the number of vertices in

each vertex set Vo, V1, of the given bipartite graph.

4

2.1. The matching algorithm.

For convenience assume the given graph G has a perfect matching (the algorithm can detect

graphs not having a perfect matching, as indicated below).

The plan for the algorithm is to combine the Hungarian algorithm for weighted matching with

the Hopcroft-Karp algorithm for cardinality matching. Recall that the Hungarian algorithm always

chooses an augmenting path of smallest net cost. The Hopcroft-Karp algorithm always chooses an

augmenting path of shortest length. Both of these rules can be approximated simultaneously if

the costs are small integers. Arbitrary costs can be replaced by small integers by scaling. Thus

our algorithm scales the costs. At each scale it computes a matching. The computation is efficient

because it is similar to the Hopcroft-Karp algorithm; the matching is close to optimum because the

computation is similar to the Hungarian algorithm. Now we give the details.

E scale of the algorithm finds a close-to-minimum matching, defined as follows. Every

vertex v has a dual variable y(v). A 1-feasible matching consists of a matching M and dual ,

variables y(v) such that for any edge vw,

~~VM + YMw :5 e(vu) + 1,

Y) + VMw= *w), for VW 6 M.

A I-optimal matching is a perfect matching that is 1-feasible. If the +1 term is omitted from

the first inequality, these are the usual complementary slackness conditions for a minimum perfect

matching ILl. The following result is due to Bertsekas [Ber86].

Lemma 2.1. Let M be a I-optimal matching.

(a) Any perfect matching P has c(P) 2: c(M) - n.

(b) If some integer k, k > n, divides each cost c(e) then M is a minimum perfect matching.

Proof. Part (a) follows because c(M) = E{c(e)e E M} = Fy(v)jv E V(G)) _ c(P)+n. Part

(6) follows from (a) and the fact that any matching has cost a multiple of k. I

This lemma is the basis for the main routine of the algorithm, which does the scaling. The

routine starts by computing a new cost f(e) for each edge e, equal to n + 1 times the given cost.

Consider each r(e) to be a signed binary number *bib 2 ... bk of k = [Ilog(n + I)NJ + 1 bits. The

routine maintains a variable c(e) for each edge e, equal to its cost in the current scale. The routine

initializes each c(e) to 0 and each dual y(v) to 0. Then it executes the following loop for index a

going from I to k:
*1.

Step 1. For each edge e, e(e) - 2c(e)+ (signed bit b. of r(e)). For each vertex v, y(v) - 2(v) - 1.

Step 2. Call the scale-match routine to find a 1-optimal matching. I

Lemma 2.1(b) shows that the routine halts with a minimum perfect matching. Each iteration

of the loop is called a scale. We give a scale.match routine that runs in O(.,/Wm) time. Since there

are O(log(nN)) scales this achieves the desired time bound.

It is most natural to work with small costs. The scale-match routine transforms costs to achieve

this. Specifically, sode.rmatch changes the cost of each edge vw to c(vw) - y(v) - y1(w); then it calls

the match routine on these costs to find a I-optimal matching M with duals t?(v); then it adds

yl(v) to each dual v(v) (y(v) is the dual value before the call to match).

Clearly M with the new duals is a I-optimal matching for cost function c. FPurther, since Step

1 of the main routine changes costs and duals so that the empty matching is -feasible, the costs

input to match are integers -1 or larger. If nv is an edge in the 1-optimal matching found in the

previous scale then after Step 1, V(v)+ v(w) > e(vw)- 3. Hence vw costs at most three in the costs

for match. Thus there is a matching of cost at most 3n. (This is true even in the first scale). We

will show that if every edge costs at least -1 and a minimum perfect matching costs O(n), match

finds a 1-optimal matching in O(V/'im) time. This gives the desired time bound.

Note that the transformation done by scale.match is for conceptual convenience only. An actual

implementation would not transform costs; rather match would work directly on the untransformed

costs.

The coast-length of an edge e with respect to a matching M is

cl(e) = c(e) + (if e M then 1 else 0).

The net cost-length of a set of edges S with respect to M is

cl(S) = c(e)Ie E S - M) - j~td(e)e e S Cl M).

This quantity equals the net cost of S (with respect to M) plus the number of unmatched edges

in S. Hence an augmenting path with smallest net cost-length approximates both the smallest net

cost augmenting path and the shortest augmenting path; this is in keeping with our plan for the

algorithm.

An edge vw is eligible if V(v) + y(w) = cl(vw), i.e., the l-feasibility constraint for vw holds with

equality. (Note that a matched edge is always eligible). It follows from the analysis below that an

augmenting path of eligible edges has the smallest possible net cost-length. Hence the algorithm

6

% %. .~ I ~V W. ..*. .":-- W .d -. ,r' k., .. ' _ % W.% %'~' ~~

augments along paths of eligible edges. If no such path exists it adjusts the duals to create one.

The details are as follows.

Assume the costs given to match are integers at least -1, and there is a perfect matching

costing at most an. (In the scaling algorithm a = 3).

procedure match.

Initialize all duals y(v) to 0 and matching M to 0. Then repeat the following steps until Step 1

halts with the desired matching:

Step 1. Find a maximal set .A of vertex disjoint augmenting paths of eligible edges. For each path

P E A, augment the matching along P, and for each vertex w E V, n P, decrease y(w) by 1. (This

makes the new matching M 1-feasible). If the new matching M is perfect, halt.

Step 2. Do a Hungarian search to adjust the duals (maintaining 1-feasibility) and find an aug-

menting path of eligible edges. I

We now give the details of Steps I and 2 that are needed to analyze match. (A full description

of these steps is given later). Both steps can be implemented in 0(m) time. Step 2 is a Hungarian

search (essentially Dijkstra's shortest path algorithm, see e.g. IQ). The search does a number of

dual adj ustments. Each dual adjustment calculates a positive integer 6 and increases or decreases

various dual values by 6, so as to preserve 1-feasibility and eventually create an augmenting path ,-"

of eligible edges. (The dual adjustment is defined more precisely below). At any point in the
algorithm define

F = the set of free vertices in V;

A - the sum of all dual adjustment quantities 6

in all Hungarian searches so far.

The Hungarian search maintains the duals so that any free vertex v E F has y(v) = A and any

free vertext vE V, has y(v) = O.
To analyze the match routine, first observe that it is correct: The changes to the matching (in

Step 1) and to the duals (in Step 2) keep M a I-feasible matching. If M is not perfect but G has

a perfect matching, the Hungarian search creates an augmenting path of eligible edges. Hence the

algorithm eventually halts with M a 1-optimal matching, as desired. (Note that if G does not have

a perfect matching, this is eventually detected in Step 2).

To analyze the run time, consider any point in the execution of match. Let M be the current

matching, and define F and A as above. Let M" be a minimum perfect matching. For any set of

7.

N JA

To analyze the run time, consider any point in the execution of match. Let M be the current
matching, and define F and A as above. Let M* be a minimum perfect matching. For any set of

edges S let cl(S) denote net cost-length with respect to M.

M" 0 M consists of an augmenting path P. for each v e F, plus alternating cycles C,. Thus

n + c(M>) - CM 2 cl(M' M = .cl(P.) + ci .(1)

To estimate the right-hand side, consider an alternating path P from U E V0 to m E Vo, where

uis on an unmatched edge of P and m is on a matched edge of P (m stands for 'matched"; no
confusion should result from the double usage of m). Then

y(U) < y(m) + cl(p). (2)

This follows since for edges uv f M and tim E M, p(u)+y(v) < cI(uv) and y(v)+y(m) = cl(vm), so

y(u) :5 y(m) + cl(uv) - cl(vm). Inequality (2) implies that any alternating cycle C has cl(C) > 0.
It also implies that any augmenting path P. from some v E F to some free vertex t E V has

y(v) + y(t) :5 cl(P,). Recall that the Hungarian search keeps y(v) = A and y(t) = 0. Hence

A :5 cl(P,), and the right-hand side of (1) is at least IFIA.

By assumption on the input to match, c(M') _ an and c(M) >_ -n. Hence the left-hand side

of (1) is at most bn for b =a + 2. Thus we have shown

IFIAJ bn. (3)

This implies there are 0(./n) iterations of the loop of match. To see this note that each

execution of Step 1 (except possibly the first) augments along at least one path, because of the

preceding Hungarian search. Hence at most vIW+ I iterations start with IF[_5 V n. From (3),

IFI _> V1 implies A < JR We will show that each Hungarian search increases A by at least
one. This implies at most + I iterations start with A <_ % , giving the desired bound.

Now we show that a Hungarian search S increases A by at least one. It suffices to show that 5
does a dual adjustment (since any dual adjustment quantity 6 is a positive integer). Search S does

a dual adjustment unless when it starts, there is an augmenting path P of eligible edges. Clearly P

intersects some augmenting path found in Step 1. It is easy to see that P contains an unmatched

edge uw, with w but not v in an augmenting path of Step 1, and w E V1. But when Step 1 decreases

V(w) this makes vw ineligible. So P does not exist, and S does a dual adjustment.

In summary match does 0(,/n) iterations. Eadh iteration takes time O(m), giving the desired

time bound O(vr/m).

*8
.3

I O..I

.,"%" " % ". %"".. %" ."%" ." ." % -. %', " % " . " " ".". % % % "-". - .. " % .. - ,-p' % , " % % , ". % , ". N N, % %I

.LM W '. .5 Ag A ~.M W ~F P I ' 'X rill . V.-., .- * .-* - . . -*7.7 1:-*

It remains to give the details of Steps 1 and 2. Step I finds the augmenting paths P by depth-

first search. To do this it marks every vertex reached in the search. It initializes a path P to a free

unmarked vertex of Vo. To grow P it scans an eligible edge ry from the last vertex z of P (z will

always be in Vo). lIf is marked, the next eligible edge from z is scanned; if none exists the last two

edges of P (one matched and one unmatched) are deleted from P; if P has no edges another path %

is initialized. If y is free another augmenting path has been found, y is marked, the path is added

to A and the next path is initialized. The remaining possibility is that y is matched to a vertex z.

In this case y and z are marked, edges zy, yz are added to P and the search is continued from z.

It is clear that this search uses 0(m) time. To show that it halts with A maximal, first observe

that for any marked vertex x E V - V(A), every eligible edge zy has y marked and matched, or in

V(A). (Note that V(A) is the set of vertices in paths of A). Hence an easy induction shows that

an alternating path of eligible edges, starting at a free vertex of V0 and vertex disjoint from A, has

all its V0 vertices marked, and is not augmenting.

Step 2 is the Hungarian search. It grows a forest 7 of eligible edges, from roots F. A pair of

eligible edges vw, ww', where v E Vo n 7, w f T, and wow' E M, is added to 7 whenever possible. -.

Eventually either an augmenting path of eligible edges is found or 7 cannot be enlarged.

hI the latter case a dual adjustment is done. It changes duals in a way that preserves 1- -.

feasibility and allows 7 to be enlarged, as follows. It computes the dual adjustment quantity

b6= minjc(vw) - y(v) - y(w)jv E Von 7, w f 7).

For each v E 7, it increases y'v) by 6x (if v E Vo then 1 else -1). It is easy to see that this I.

achieves the goal of the dual adjustment (any edge v achieving the above minimum becomes

eligible after the dual adjustment, and so can be added to 7).

After the dual adjustment the search continues by enlarging 7. Eventually the desired aug-

menting path is found.

Note that as claimed above, at any point in the algorithm a free vertex v has y(v) = A if v E F

(since every dual adjustment increases y(v)) and y(v) = 0 if v E V1 (no dual adjustment changes

A Hungarian search can be implemented in O(m) time. This depends on two observations.

First, the proper data structure allows a dual adjustment to change all duals y(v) in 0(1) time

total. Specifically the algorithm keeps track of A (defined above). When a vertex v is added to 7

its current dual value and the current value of A are saved as V0 (v) and A(v), respectively. Then

9

-;" ,':__)' -' ',".'' .: ..':. "," ".;-,,/:",'" " ,",,,.,"-,.,, .: "..,',."--,";-''-;,''--.5'..'.' '.:';',..'..-..-.;,',',.,'.,,,,,,',,,.,.-,,.,.',,.",¢ : . -, . _

at any time the current value of V(v) can be calculated as

yo(v) (A())x(if Vo then I else - 1).

Hence the dual adjustment is accomplished by simply increasing the value of A.

The second observation is how to compute 6 in a dual adjustment. The usual implementation

of a Hungarian search does this with a priority queue that introduces a logarithmic factor into the

time bound je.g., FT]. This can be avoided when, as in our case, costs are small integers (this was

observed in (D, W for Dijkstra's shortest path algorithm). The details are as follows. The next

value of 6 is the amount that the next value of A increases from its current value. Hence it suffices
to calculate the next value of A. The next value of A is the smallest possible value such that some

edgev w withv r: VO n 7 and w f I becomes eligible (when duals are adjusted by 6). Thus the

next value of A equals

minjcI(vw) - yo(v) - y(to) + A(v)1v E Vo n 7, w f Jr.

Since any Hungarian search has IFI 2> 1, inequality (3) implies A < bn. The algorithm maintains

anamy Q[1..4n]. Each entry Qfr] points to a list of edges vw that can make A = r, i.e., V E
Vo n 7, to 7 and r = cl(vw) - VO(i) - y(w) + &(v). The algorithm scans down Q and chooses

next value of A as the smallest value r with QJrJ nonempty. This gives the next value of 6, and the

newly eligible edges, a desired. The total overhead for scanning is O(n) since Q has bn entries.

(Note that an edge vt with v E Vo n 7, tw f 7 does not get entered in this data structure if

el(vw) - V,(v) - y(wv) + A(v) > bn).

Only one detail of the derivation remains: We have assumed that the dual values y(v) do not

grow too large, so that arithmetic operations use 0(l) time. To justify this we show that each y(v)

has magnitude O(n2N). It suffices to do this for v E Vo. Define Y. as max{v(v)I[v E Vo) after the

sth scale. Then Yo = 0 and Y.+1 :_ 2Y,+bn-I (since A < bn). Thus Y -< (2k- 1)(bn - 1) = O(n 2N)

as desired. Note that the input uses a word size of at least max{log N, log n) bits. Hence at worst

the algorithm uses triple-word integers for the dual variables.

Theorem 2.1. A minimum perfect matching on a bipartite graph can be found in

0(/ fmlog(nN)) time and O(m) space. |

A heuristic that may speed up the algorithm in practice is to prune the graph at the start of
each scale. Specifically, scale-match can delete any edge whose new cost is 6n or more. In proof,

10

- -, -- - X -6

recall that in the costs computed by scae.match there is a perfect matching M costing at most 3n;
taking into account the low order bits of cost that are not included in the current scale, the true

.%

cost of M is less than 4n. In the costs computed by aule.match every edge costs at least -1; again
taking into account low order bits, the true cost is more than -2. Hence a matching containing an
edge of new cost 6n or more has true cost more than 4n and so is not minimum.

2.2. Exctenslons of the matching algorithm.

The bounds of Theorem 2.1 also apply to finding a minimum cost matching. To see this let G
be the given graph. Form ' by taking two copies of G; for each v E V(G) join the two copies of v
by a cost zero edge. Then V is bipartite, and a minimum perfect matching on U gives a minimum
cost matching on G.

A similar result holds for minimum cost maximum cardinality matching. The construction is
the same except that the edges joining two copies of v cost nN. The problem of finding a minimum
cost matching of given cardinality can also be solved in the same bounds; it is most convenient to
use Theorem 3.2 below.

Returning to perfect matching, several properties of match are needed for Section 3. Define

A = the total length of all augmenting paths found by match. .

.

We first derive a bound on A. Let P denote the it augmenting path found by match. Let %

be its length, measured as its number of unmatched edges; let Ai denote the value of A when Pi
is found; let M be the matching after augmenting along A. Recall that in the Hopcroft-Karp
algorithm, for some constant c, < en/(n - i + 1). Thus the total augmenting path length is

I~= = O(nlogn) JET]. In match, 4 does not have a similar bound. However it is bounded in
an amortized sense, as follows. ,.

Lemma 2.2. For any k in [1..n, rk 4+ c(Mk) = E-

Proof. A calculation similar to (2) shows that for any i, A, = cl(Pi). It is easy to see that
cl(Pi) = 4 + c(M) - c(M-) (assume c(Mo) = 0). Summing these relations gives the lemma. .

Corollary 2.1. A O(n log n).

11D

Proof. Since IMI = k the entry conditions for match imply c(Mk) ?: -k. Hence A < n +
5-1 A,. By (3), Ai < bn/(n - i + 1). Summing these inequalities gives the lemma. i

The second property shows that the depth-first search of Step 1 never encounters a cycle. A

similar property for network flows is used in [GoT87a].

Lemma 2.3. In match there is never an alternating cycle of eligible edges.

Proof. Initially there are no matched edges, so there are no aternating cycles of eligible edges.

In a Hungarian search, whenever the duals of a matched edge vw are changed, w E V, gets v(w)

decreased. Hence any edge joining to to a vertex not in the search forest 7 is ineligible. This implies

the Hungarian search does not create an alternating cycle of eligible edges. Similar reasoning applies

when an augment creates a new matched edge and changes dual. I

Some applications of matching require ordinary dual variables, defined as follows. The duals

are dominated on edge vw if y(v) + y(w) < c(vw); they are tight on vw if equality holds. The duals

are dominated and tight for a given matching if each edge is dominated and each matched edge is

tight; such duals are the usual linear programming dual variables [L]. The scaling algorithm halts

with 1-optimal duals, but these are not necessarily dominated and tight. Such duals can be found

as follows.

Let G+ be G with an additional vertexa E Vo and an edge sv for each v E Vi. Extend the

given cost function e to G+ by defining c(u") at an arbitrary integer, the cost function used by the

matching algorithm extends to G+ by its definition, r - (n + 1)c. To specify a cost function on G+

we write G+;c or G+;?. Let M be a minimum perfect matching on G; for vertex v let v' denote

its mate, Le., ' E M. For v E Vo let M, be a minimum perfect matching on G+ - v; c. (Such a

matching exists, for instance M - vv'+ a8v'). Set

y(v) = If v E Vo then - c(M.) else c(vv') - y(v').

These duals are dominated and tight on C. (This can be proved by an argument similar to the

algorithm given below. Alternatively see 1087] for a proof from first principles).

Suppose a Hungarian search (as in match) is done on G+; r. It halts with a tree T of eligible

edges, rooted at s. Clearly T is a spanning tree. For any v E Vo, augmenting along the sv-path in

T gives a 1-optimal matching N, on G+ - v;V. N, is a minimum perfect matching on G+ - v; c.

This follows from Lemma 2.1, since G+ - v and G have the same number of vertices. Hence N,

qualifies as M.

12

~~ ~ '~ ~ '~~ d V V~f.~~ %~ ~ ~ .~. *V *V.' .- .- U .

In summary, the following procedure finds dominated tight duals. Given is the output of

the matching algorithm, i.e., a 1-optimal matching on G;E with duals y. Form G+;E, defining

c(av) = [v(v)/(n + I)1 for each v E V1; also set uy(8) - 0 (this gives l-feasible duals). Do a

Hungarian search to construct a spanning tree T of eligible edges rooted at a. Do a depth-first

search of T to find c(M,) for each v E Vo. Define dominated tight duals y(v) by the above formula.

The time for this algorithm is 0(m). This is dear except perhaps for the time for the Hungarian

search. The choice of c(uv) ensures that A _5 *n. Hence, as in matcA, the Hungarian search can be

implemented using an army Q. This gives 0(m) time.

Corollary 2.2. Dominated and tight duals on a bipartite graph can be found in

O(Vnmlog(nN)) time and 0(m) space. I

This implies the next result. Consider a directed graph with n vertices, m edges, and arbitrary

(possibly negative) edge lengths.

Theorem 2.2. The single-source shortest path problem on a directed graph with arbitrary edge

lengths can be solved in 0(Vrnmlog(nN)) time and 0(m) space.

Proof. This problem can be solved by finding dominated tight duals on a bipartite graph whose

costs are the edge lengths, and then running Dijkstra's algorithm [G85a]. I

Obviously the same bound holds for 0(VW/) sources.

3. Degree-constrained subgraphs and extensions.

This section extends the matching algorithm to derive the last four bounds of Table I. Section

3.1 gives an algorithm for the minimum perfect degree-constrained subgraph problem, deriving

time bounds for finding a degree-constrained subgraph and for solving the transportation problem.

Section 3.2 discusses scaling edge multiplicites, which improves the bounds when edge multiplicities

are large. Section 3.3 extends the results to network flow. Throughout Section 3, n denotes the

number of vertices in the input graph.

3.1. The degree-constrained subgraph algorithm.

13

This subsection gives an algorithm for the perfect degree-constrained subgraph problem. Recall

that a multigraph has m edges and Yn edges counting multiplicities. Note that a perfect DCS

problem on a multigraph of n vertices and wn edges can be reduced in linear time to a perfect

matching problem on a graph of O(mn) vertices and edges JG87]. Hence Theorem 2.1 immediately

implies a bound of O(W8 /2 log(mN)) for the DCS problem. We now derive the better bound given

in Table 1.

For a DCS D, the cost-length of edge e is

cl(e) = c(e) + (if e f D then 1 else 0).

A 1-feasible DCO is a DCS D and dual variables y(v) for each vertex v, such that for any edge vw,

y(v) + y(w) < cl(vw), for vw D,

y(v) + y(w) _> cl(vw), for vu C D.

A I-optimal DO is a perfect DCS that is 1-feasible. (Note that the definition of a 1-feasible

matching is slightly different- the second relation holds with equality. The difference is not

significant: if we treat a matching problem as a DCS problem, a 1-feasible DCS gives a 1-feasible

matching, by lowering duals as necessary to achieve the desired equalities).

As in Lemma 2.1, if every cost is divisible by k, k > n/2, then a 1-optimal DCS is a minimum

perfect DCS. This is essentially a result of Bertsekas [Ber86]. In proof, note that a perfect DCS D

has minimum cost if any alternating (simple) cycle C has c(C n D) < c(C - D). This condition

can be verified for a I-optimal DCS D by a calculation similar to Lemma 2.1.

Now we describe the algorithm. Many details are exactly as in Section 2, so we elaborate only

on the parts that change. All data structures have size O(m). Clearly the multigraph G can be
represented by such a structure.

The main routine works in (at most) [log(n + 2)NJ scales. (This is justified by the above

analog of Lemma 2.1; each original cost is multiplied by [(n + 1)/21). Steps 1-2 and scale-match

are unchanged. Let Do be the 1-optimal DCS of the previous scale. Note that the match routine

is called with integral costs c(e) that are at least -1 for e f Do and at most three for e E Do.

The match routine initializes all duals V(v) to 0 and D to {elc(e) < -1). (Clearly D does not

violate any degree constraint). The definition of an eligible edge vw is still y(v) + y (w) = cl(vw).

Step I of match finds a maximal set of augmenting paths of eligible edges and augments the matching

along each path. (Unlike Section 2, no duals are changed after an augment; the new DCS is 1-

feasible and the edges on an augmenting path become ineligible). Step 2 does a Hungarian search

14

-pI

-IP W - -_J

I.

to adjust duals and find an augmenting path of eligible edges. Note this algorithm is correct: Since

the Hungarian search maintains 1-feasiblity, the algorithm halts with a 1-optimal DCS (assuming

a perfect DOS exists).

Step I is implemented by a depth-first search similar to Section 2, modified for degree con-
straints larger than one: Each augmenting path P is initialised to a vertex z E Vo with positive

deficiency; z is used to initialize paths P until its deficiency becomes zero or it is deleted from
P. P is grown as an alternating path, so that when its last vertex z is in Vo an edge not in D is

canned, and when z is in V, an edge of D is scanned. Instead of vertex marks, each vertex has

a pointer to its last nededge. The last edge of P gets deleted if z has no more unscanned

edges. It is easy to see the time for Step 1 is O(i). (As shown below each augmenting path is

simple, although this fact is not needed for correctness).

The details of the Hungarian search are similar to Section 2. The main differences stem from

the fact that the search forest .r is grown edge-by-edge, rather than in pairs of unmatched and

matched edges. The time for the search is O(m). This assumes that, as in Section 2, an array

QJl..dn] is used to compute minima; here d is the constant of Lemma 3.3, which justifies using the
array. 4.

This completes the description of the DCS algorithm. The discussion shows that it is correct.

The efficiency analysis uses three inequalities, each analogous to (3) of Section 2. We use notation

similar to Section 2: D is the DCS at any point in match. Do is the 1-optimal DCS of the previous

.ale; hence each of its edges costs at most a = 3. F is the set of vertices in Vo with positive

deficiency; 4' is their total deficiency,

4'={(OV, D)Iv F F).

A is the sum of all dual adjustment quantities 6 in all Hungarian searches so far. Each z E F has

(z)= A. P denotes any one of the augmenting paths containing z in Do 0 D.

Lemma 3.1. For some constant b, at any point in match, A 5 bU.

Proof. The argument of Section 2 gives an analog of (1),
p."

clDo 0 D) ?! E{l(, D-,.v,, 6 F). .'

An edge of Do - D has cost-length at most a + 1; an edge of D -Do has cost-length at least -1.

Hence the lemma holds with b = (a + 2)/2. 1

15

M.A

-a

The second inequality is for graphs with bounded multiplicity. It generalizes IET). Recall that

M denotes the maximum multiplicity of an edge in the multigraph.

Lemma 3.2. For some constant c, at any point in match, vff _5 cnV.
S.e

Proof. Set b a + 2. For eah integer j define

Ui - (u E Voly(u) E fb(j- 1)-.bj)},

w, = (wE VIly(w) - a - 1 E (-bj.. - b(i - 1)1).

We will show that or any j E [L..[Alb + 1, each P. has an edge uw with E U,, w E W. This

implies MjIUilWjl -4. Thus IUil or IWil is at least VlfW. Hence n VIF7 (A/b), as desired.

To find the desired edge uw in P, let the edges in P, - D be uiw,, i 1,...,k (thus 1 = = z,

and ui+lw +l follows ,isw,). Since P, C Do T D,

y(,,d + y(wi) <5 a + 1,(4
Y(,) + O(,+l) __. -1.

Note that y(ul) = A; y(uk) < 6 (by (4) and y(wh) = 0); and y(u+j) _ y(ui) - 6 (also by (4)).

These three inequalities imply that for any j e 1..j&/b + 1]], P, has some ui • U,. For a given

choose the last such i. Then u%+i E Ui-_I. Together with (4) this implies wi E TV, since

-bj < -y(ui+i) - b < vk-) a- 1:5 -y(us) _< -b(j - 1).

We have shown that wi E W, and u, E U,, as desired. V

Before continuing we give a useful refinement of Lemma 3.2. Let X be a matching such that

every edge not in X has multiplicity at most Mx.

Corollary 3.1. For some constant c, at any point in match, Av'i < cnv' .

Proof. The proof is similar to the lemma. We show that for any j E ji..[rA/b +-111, each P, has

an edge uw not in X with u E Ui U Uii, E Wi. This implies Mxi UU ,-IllWI f, which

leads to the desired conclusion.

To find the desired edge uw for a path P, proceed exactly as in the lemma to find an index

i with u, E U,, ui+IE U,-j and wt E Wi. One of the edges uiwi, wui,+1 is not in X and can be

taken as uw. I

16

Anoter bound on a is useful for large multiplicie. It is similar to the bound used in

[GoT87a1]. It justifies using the army Q[1..dn] to compute minima in the Hungarian search.

Lemma 3.3. For some constant d, at any point in match, A :_ dn.

Proof. The proof of Lemma 3.2 shows that for any i E[A/b + il, P has some u i. I

Corollary 3.2. The number of iterations of match is O(min(-,/T,n 2/8M/,n}).

Proof. Each execution of Step I (except possibly the first) augments along at least one path, i.e.,

it decreases t by at least one. The definition of Step I implies that each Hungarian search (except

the last) increases A by at least one. Now the first two bounds of the lemma follow because at any

point in the algorithm A or t is at most B, where Lemma 3.1 gives B = v and Lemma 3.2

gives B = (cn) 2 /MI/A. The third bound follows from Lemma 3.3. 1

The corollary implies the following time estimates. The estimates are good for graphs or

multigraphs of very small multiplicity.

Theorem 3.1. A minimum perfect DCS on a bipartite multigraph can be found in

0(min,/,,I 3M/}vnlog(nN)) time. The space is O(m). I

For example in a bipartite graph a minimum perfect DCS can be found in
0(MinfrMi'vz2/3}Mlog(N)) time.

The bounds of the theorem also apply to finding a minimum cost DCS. To see this let G be the
given multigraph or graph. Form U by taking two copies of G and adding a set of edges X, where

for each v E V(G), X contains an edge joining the two copies of v, with multiplicity u(v) - t(v) and

cost zero. It is easy to see that ' is bipartite, and a minimum perfect DCS on Z gives a minimum

cost DCS on G. Furthermore X is a matching, so Corollary 3.1 applies with Mx = M. This implies

the time bound of the theorem for minimum cost DCS. Minimum cost maximum cardinality DCS

is similar.

Now we derive bounds that are good for multigmphs with moderately sized multiplicities.

First observe Lemma 2.3 still holds: in match there is no alternating cycle of eligible edges. The

proof is essentially the same: There is no such cycle initially, since the edges in D are ineligible. A

Hungarian search does not create such a cycle, since immediately miter a dual adjustment a cycle

leaving 7 on a new eligible edge re-enters 7 on an ineligible edge.

17

.- % V% V%% ~ .% - p -S % %**** . ' - j- p.

This fact ensures that the time for depth-frstearch in Step I is O(m) plus the tota

augmenting path length. Thus the total time for match is O(mB + A), where B is the number of

iterations and A is the total augmenting path length. Corollary 3.2 bounds B; now we estimate A.

Lemma 3.4. A = O(min{UogU,nV/W)).

Proof. As in Corollary 2.1, A <_ U + 1 &,. For the first bound estimate the summation as in

Corollary 2.1, using Lemma 3.1. For the second bound, Lemma 3.2 shows that the summation is

at most E',cv/ t - (nv/19U). I

Theorem 3.2. The transportation problem (capacitated or not) can be solved in

0((min{vU, nI2/3M1 /, n}m + min{V log U, nv/fA)) log(nN)) time. The space is O(m). I

To understand this rather involved time bound, first note that the terms containing M are

relevant only in the capacitated transportation problem. The main use of the theorem in this

paper is when U = O(nm), in which case the time is O(nmlognJog(nN)); this bound is used

in Section 3.2 to solve transportation problems with larger U. For further applications we con-

centrate on the range M = O(n). In this case the above bound for U = 0(nrm) holds, and also

the bound O(n2 V/m-log(nN)); hence in this range the performance is competitive with [GoT87a].

In most of the range M = O(n) the bounds of Theorem 3.2 are those of Theorem 3.1 with wn

replaced by m: Using U log U as the second term of the time bound and writing Bm as the first

term, the first term dominates if U = 0 (Bm/logn). Hence the bound is O(n2/SM/ 3mlog(nN))

if U = O(n2/SM1/Sm/logn), e.g., M = 0(n/(iogn)3/2); the bound is O(v/'imlog(nN)) if

U = O(v/'mVm/logn), e.g., M - 0(m/(iogn)2); the bound is O(VG/ mlog(nN)) if U -

O(Vn m/logn), e.g., all degree constraints are O(M) and M = O(m 2 /(n(logn) 2).

As in Theorem 3.1, the same bounds hold for networks where each node has an upper and

lower bound on its desired degree, and the objective is minimum cost or minimum cost maximum

cardinality.

3.2. Scaling edge multiplicities.

In multigraphs with large multiplicities efficiency is gained by scaling the multiplicities. Let

D be a DOS. Recall that for an edge e, u(e) and d(e) denote the multiplicities of e in G and D,

respectively; for a vertex v, u(v) and d(v) denote the degree constraint of v and the degree of v

18

in D, respectively. The term w-valve refers to a multiplicity u(e) or a degree constraint ul(v). The

approach is to scale is-values. The 'closeness lemma' needed for scaling is the following.

Let G be a multigraph with is-values for which D is a minimum cost maximum cardinality

DOS. Form u+ by adding one to the u-values of an arbitrary subset of vertices and edges (in

particular a is-value can increase from zero to one). Let I be the number of increased u-values (so

15m + n). Let D+ be aminmum cost maximum cardinality DOS for u+. Let D+)D denote

the subgraph that is the direct sum of subgraphs D+ and D(i.e., for any edge e, D+isD has

jd+(c) - d(e)I copies of e). Choose D+ so that ID+ S DI is as small as possible. 0+(v, D) denotes

the deficiency of D at v~ for u-values u+. -

Lemma 3.5. D+ 0 D can be partitioned into at most I simple alternating paths and cycles

(where 'alternating' means edges are alternately in D and D+).

Proof. Since both D+ and D are DOS's for u+, Dl ~ can be partitioned into simple alternating

paths and cycles; for each vertex v, at most 0+(v, D+) paths end at v on a D-edge, and similarly

for a D+-edge. Call an edge vw with d+(vw) > d(vw) naews if either

(i) d(vw) =u(vw), or
(ii) vw is an end of a path of D+ e D and d(v) = ul(v).

There arm at most I new edges. (A type (i) new edge clearly has an increased u-value. For a type

(ii) new edge vw, v has an increased u-value and 0+ (v',D) = 1, so vw is the only type (ii) edge

associated with v). Thus it suffices to show that any al ternating path or cycle P of D+ 0 D contains

a new edge.

P does not begin and end with a D-edge, since D+ has maximum cardinality. Suppose P does

not contain a new edge. Then D e P is a feasible DOS for us. (This follows since a D+.edge vw of
P has d(vw) < u(vw); further if this edge vw is an end of P then d(v) < u(v)). P dos not begin

and end with a D+-edge, since D has maximum cardinality. Thus P is an even length alternating

path or cycle. This implies P has zero net cost (with respect to D or D+). But this contradicts

the fact that JD+ li Dj is as small as possible. I

The lemma indicates that D+ 0 D can be found in a "small" multigraph G', defined as folows.

A vertex v r= V(G) corresponds to vix, V'2 E V(C'); G' has an edge v1v2 of cost 0 and multiplicity

1. An edge vw F- E(C) corresponds to edges vwl v2 w2 E E(G'), with multiplicities and Costs A

V'Vuj-+(vu,) -d(vw), c'(vi w) =c(vw) -nN;

U'(V2W2) = d(vw), C'(v2W2) = -C(VW) + raN.

19

-4-
-

P.

Call these edges G-edlges; edges v2w2 are D-ed gee and edges v1w1 are non-D-edgea. Finally each v E

V(G) has upper and lower degree constraints u'(vl) = u'(v2) = i, e(v,) = 0, e(v2) = I-0+(v, D).

Consider Y, a minimum cost DCS of G'. It is easy to see that the G-edges of D' can be

partitioned into at most I paths and cycles that are alternating for D, and that D s D' is a feasible

DCS (note that the lower bounds in C' allow a vertex v to be on at most 0+(v, D) non-D-edges at

the end of an alternating path). Furthermore, the costs of C-edges guarantee that l' has as many
augmenting paths as possible and no "de-augmenting paths' (i.e., paths that begin and end with

D-edges). Thus D' is the desired set of paths (D+ 0 D or an equivalent set).

Now we state the capacity #caling algorithm for finding a minimum perfect DCS. Given a DCS

problem on a multigraph G, let U denote the given u-values, with M the largest 9-value. (Without

loss of generality M is the U-value of a vertex). Consider each 9-value to be a binary number

bi ... bj of k = Log Mj + I bits. The routine maintains u as the u-values in the current scale, and

D (and d) as the DOS in the current scale. It initializes each u(e), d(e) and u(v) to zero. Then it

executes the following loop for scale index a going from 1 to k:

Step 1. For each edge e, d(e) ,- 2d(c) and u(e) - 2u(e)+ (bit b, of U(e)). For each vertex

V, u(v) - 2u(v)+ (bit b. of U(v)). --.

Step 2. Form the multigraph C' described above. (Note I :5 m + n; u+ is given by u in the -
algorithm.)

Step 3. Let D' be a minimum cost DCS on G'. Set D .-D D' and let d be the function

corresponding to D. I

The correctness of this algorithm follows from the above discussion. (Note that this algorithm

works on both bipartite and general graphs). To analyze the running time, assume that the DOS in .,,

Step 3 is found using the algorithm of Theorem 3.2 (note that U -O(nm)). The following bound

is immediate.

Theorem 3.3. The transportation problem (capacitated or not) can be solved in

O(nm log nlog(nN)log M) time. The space is O(m). I

This result extends to the variants of the perfect DCS problem mentioned above.

The capacity scaling algorithm has a variant, called EK capacity scaling, since it is similar

to the mincost flow algorithm of Edmonds and Karp [EKI. EK capacity scaling is ued below to

solve flow problems with lower bounds. It maintains a set of dominated tight duals on C for u, and

20

D. (Dominated tight' duals satisfy the inequalities for 1-feasiblity with cost-length ci replaced

by cost c). The algorithm scales up costs and duals exactly as in Step 1 of the main routine and .

scale.match. This ensures that the costs input to match are positive integers except for edges that

were in the DOS of the previous scale.

The match routine initializes all duals y(v) to 0 and the DCS to {elc(e) <_ 0). This DCS does

not violate any degree constraint and the duals are dominated tight. Then match does as many

minimum cost augmentations as possible. The augmenting paths are found using the Hungarian
algorithm. Then match searches for alternating even paths and cycles with minimum negative

cost, and augments along them ('augmenting along a path or cycle' is defined by analogy with

augmenting along an augmenting path; such an augmentation, in the current context, gives a new

matching of equal cardinality). These searches are also implemented with the Hungarian algorithm.

(A minor point is that match uses the standard Hungarian algorithm, based on dominated tight

duals as in [L]. This differs from the Hungarian search in Section 3.1 which uses 1-feasible duals. The
main difference is the definition of "eligible', which uses either cost or cost-length as appropriate).

Each Hungarian search takes time O(m + n log n) using Fibonacci heaps IFT]. In problems

where each scale has I = O(n), the total time for EK capacity scaling is 0(n(m + n log n)log M), .%

slightly improving Theorem 3.3. (The correctness of EK capacity scaling follows from Lemma 3.5, IN
applied one edge or vertex at a time, i.e., f= 1).

Next consider the transportation problem with cost functions. This problem allows parallel

copies of an edge to have different costs. Specifically the cost of the eth copy of an edge e, 1 <

p < u(e), is given by c(e,p), a nondecreasing function of p that can be evaluated in 0(1) time. As

usual these costs are in [-N..V], and each vertex v has a desired degree u(v). The problem is to

find a minimum cost perfect DOS for these degree constraints. Note that the desired DCS can still
a,.

be represented by an integral function on the edges d(e), where 0 : d(e) _< u(e), since without loss

of generality the DS contains the d(e) copies of e with smallest cost.

As examples of this problem, c(c,p) = [a.pJ + b, is the original DOS problem for a, = 0 and

a simple example of diminishing returns to scale for a, > 0. Alternatively c(e,p) could be, say, a

piecewise quadratic function; in this case evaluating c(e,p) for arbitrary p would probably involve

a binary search on the breakpoints. (Note that in the definition of the transportation problem

with cost functions, the restriction to nondecreasing cost functions c(e,p) is crucial: without it the

problem is NP-hard [GJ, p.2141. Also note that the solution to the problem is a multigraph with

integral multiplicities, by definition. This assumption of integraity is also crucial. This issue is

discussed further after Theorem 3.5 below for network flows, where real-valued flows make sense).

21

The algorithm of Theorem 3.3 works correctly for the transportation problem with cost func-

tions, if we treat parallel copies of an edge with different costs as different edges. In the time bound,

however, the term m now counts each edge e according to the number of distinct costs c(e, p). We

will show how to extend the capacity scaling algorithm to the transportation problem with cost

functions, preserving the time bound of Theorem 3.3.

First we modify the cost scaling algorithm to preserve the time bounds of Theorems 3.1-2. The

derivation of those theorems remains valid for cost functions and gives the desired time bounds,

provided all individual steps are implemented to run in essentially the same time as before. This

means implementing Step I of the main routine and scale-match in time 0(m) (even though they

modify every cost) and similarly for match. This can be done because of the following observation.

The conditions for a DCS D to be 1-feasibile are equivalent to a system with only two inequalities

per edge e = vw,

c(e,d(e)) < V(v) + y(w) _ c(e,d(e) + 1) + 1.

Further the only copies of e that can be eligible are D-edges costing c(C, d(e)) and non-D-edges

costing c(e,d(e) + 1) + 1.

Step I of the main routine and scale.match do not explicitly modify edge costs. Instead match

computes the cost of an edge when it is needed in 0(1) time using arithmetic. Specifically, the p1

cost for vw is

t7,Uc(r(vw,p)/2k-') - YD(V) - p0(W), (5)

where tr' c denotes integer truncation, k = [log(, + 2)NJ is the number of cost scales, s is the

index of the current cost scale, and yo denotes duals at the start of scale s.

The match routine starts by initializing D to contain all edges costing less than -1. This is

done by examining each edge and adding smallest cost copies to D until the cost reaches -1. The

time is O(m + U), which suffices for the bounds of Theorems 3.1-2.

In the depth-first search of Step 1, it is unnecessary to know the multiplicity of each eligible

edge when the search begins. Rather, costs c(e, d(e)) and c(e, d(e) + 1) are used to determine which

edges have at least one eligible copy. When the depth-first search finds an augmenting path P, the

next cost for each edge e E P is used to see if there is another eligible copy of e (i.e., for e E P D,

another copy of e is eligible if c(c,d(e)- 1) = c(e, d(e)), and similarly for e E P- D). Thus the time

for the depth-first search is still 0(m) plus the total augmenting path length. It is obvious that

the Hungarian search, given costs c(e,d(e)) and c(e,d(c) + 1), uses time 0(m). Thus the bounds

of Theorems 3.1-2 apply.

22

* ~* *.~. -- - - - - ~ -.... *,..

.-,. . I . -. , . , ... w. *

Now we modify the capacity scaling algorithm of Theorem 3.3. The new version works by

scaling the domain of the cost functions. The closeness lemma (Lemma 3.5) generalizes as follows.

Let G be a multigraph with c functions and u values for which D is a minimum cost maximum

cardinality DCS. Form u+ by adding one to the u-values of an arbitrary set of vertices and edges.

Form c+ so that for each edge e and p E 1O..u(e)),

c(e, i + 1) > c+(e,p + 1) _> C(e, P). (6)

(Here c(e,0) = -oo). Let I be the number of vertices with an increased u-value plus the number

of edges with an increased u-value or some decreased c-value (so that I S m + n). Let D+ be a
minimum cost maximum cardinality DCS for c and u+, chosen so that ID+ 9 DI is minimum
(D+ a D has the obvious interpretation).

Lemma 3.6. D+ $ D can be partitioned into at most I simple alternating paths and cycles.

Proof. The argument is an expanded version of Lemma 3.5; we will give only the new material.

The definition of new edge is expanded to include a type (iii) new edge e, defined to have d+(e) >
d(e) and c(e,d(e) + 1) > c+(e,d(e) + 1), where only the d(e) + 1°1 copy of e is new. (Note that

d+(e) - d(e) may be larger than one).

The argument expands in the case that P is an even length alternating path or cycle not

containing a new edge, and we must show that it has zero net cost (with respect to c+ and D+).

The net cost of P with respect to c+ and D+ is nonnegative, by the choice of D+. Hence it suffices

to show that the net cost of P with respect to c+ and D is nonnegative.

This follows from the choice of D if for every edge e whose eh copy is in P n D+, c+(ep)>

c(e, d(e) + 1). We prove this inequality as follows. The copy of e is not new and p > d(e) + 1. Now

consider two cases: If p = d(e) + 1 then c+(e,p) = c(e,d(e) + 1), as desired. If p > d(e) + 1 then

c+(e,p) c(e,d(e) + 1) by (6), as desired. I

This lemma justifies an algorithm similar to the capacity scaling algorithm. The main dif-

ferences are as follows. Step 1, in addition to scaling d and u, scales the cost function domain.

Specifically let co denote the given cost function. Then for each e and p E [1..u(e)] (where u(e)

is the new u-value) Step I sets c(e, p) - co(e, L21-p), where k = 0o9MJ + 1 is the number of

capacity scales and s is the index of the current capacity scale. Observe that the DOS for the

new d is a minimum cost maximum cardinality DCS for (the new) u-values rounded down to even

numbers and (the new) c(e,2p - 1) increased to c(e,2p). So Lemma 3.6 applies and justifies the

23

" A* - , - " ' ,%,: - . . ,' -' =%5 9 % ' "v ". - . ** ". --

. "

remaining steps: Step 2 defines G' as before but with costs changed in the obvious way to take cost

functions into account. Step 3 computes D' using the cost scaling algorithm described above.

For efficiency, these three steps are not done explicitly. (For instance, doing Step 2 explicitly

would Use e(m2) time, since an edge can be in G' with multiplicity m + n). Step I computes only

two new costs for each edge e, c(e,d(e)) (already known) and c(e,d(c) + 1). To do Step 2, G' is

initialized to contain only the cheapest copy of each edge of type v1w1, v2w12. This is the copy that

will be added to the DOS D' first. Each copy comes from a cost computed in Step 1. When the

cost scaling algorithm checks to see if there is another eligible copy of an edge e (in the depth-first

search), the next higher (or lower) cost copy of e is computed, its cost is scaled down using (5) and

it is used in the cost scaling algorithm.

Theorem 3.4. The transportation problem (capacitated or not) with cost functions can be solved

in O(nmnlognlog(nN)iog M) time. The space is O(m). I

3.3. Network flow.

Our results extend to integral network flows. It is convenient to work with the problem

of finding a minimum cost circulation, defined as follows iLl. Let G be a directed graph with

nonnegative integral capacities u(v) for each vertex v, and for each edge e, nonnegative integral

capacities u(e), lower bounds f(e) and costs c(e). The minimum circulation problem is to find a

feasible circulation with smallest possible cost. (If vertex capacities are not given, setting u(v) =

E.. u(vw) does not change the problem. The circulation problem includes the minimum cost flow

problem as a special case. As already mentioned, the usual definition of the circulation (network

flow) problem allows real-valued parameters. However note that if all capacities and lower bounds

are integral, an optimum circulation (flow) that is integer-valued always exists [LI).

A minimum circulation problem on a network G can be transformed to a minimum perfect DOS

problem on a bipartite multigraph B, as follows. A vertex v E V(G) corresponds to vi, v2 E V(B);

B has an edge v,v2 of cost 0 and multiplicity u(v). An edge vw E E(G) corresponds to VIW2 E E(B)

with cost c(v) and multiplicity u(vw) - t(vw). The degree constraints on B are

u(1Ji) = u(v) - j:{t(no)mo e E(G)),

u(v2) = u(v) - 16Av~w E(G)).

A circulation on G corresponds to a perfect DOS on B costing less by exactly

:({t(e)c(e)e E E(G)). Thus the flow problem can be solved using the DCS algorithms given

24

above. Note that B has n vertices in each vertex set, 0(m) edges, U = O(Z{u(v)lv E V(G)))
and in = O(U + E{u(e)je E E(G)). In part (a) below, m is the number of edges, with each edge

counted according to its capacity.

Theorem 3.6. A minimum cost circulation on a network with all edge capacities and lower

bounds in (O..M] can be found in the following time bounds (and space O(m)):

(a) o(min(v'n, 2f M3 /5) } og(nN)).

(b) 0((min v[',-M,n2lMI /3 , n}m + min{mM log(mM), n2 r)) log(n N)).
(c) O(nm log n log(nN) log M).

These bounds also hold when each edge cost is a convex function of its flow.

Proof. These bounds follow essentially from Theorems 3.1-4. Note that M does not necessarily

bound the multiplicities in B, since we assume no bound on vertex capacities in G. Nonetheless the

bound for part (b) holds: To show this use Corollary 3.1, with matching X containing all edges of

the form V'2; note that Mx = M. Also the bound for part (c) holds: There are log(mM) capacity

scales, but the time bound involves the factor log M because the first log m scales are trivial. I

Note that in Theorem 3.5 (c), the algorithm for convex cost functions finds an optimal integral-

valued flow. However this flow need not be the global optimum, which may involve real-valued flow
values. Finding this solution appears to be much harder. For instance if the cost of an edge is a

quadratic function of its flow, finding a minimum cost low is NP-hard 103, HI.

Next consider a minimum circulation problem in which O(n) edges have finite capacity (every

edge still has a lower bound, perhaps zero). Such problems arise as covering problems; a common

special case is circulations with lower bounds but no upper bounds (e.g., the aircraft scheduling

problem of IL, p.1391).

Theorem 3.0. A minimum circulation on a network with lower bounds but only O(n) finite

capacities, all in I0..MI, can be found in O(n(m + n log n) log(nM)) time and 0(m) space.

Proof. Without loss of generality assume that no cycle has negative cost and infinite capacity.

Then it is easy to see that all infinite capacities (on edges or vertices) can be replaced by any

number that is at least S = E(lf c(e) is finite then c(e) else t(e)Ie E E(G)) + r{c(v)iv E
V(G), c(v) is finite).

The algorithm is as follows: Find S and k - log Si. For each infinite capacity vertex v, set its

capacity to S; for each infinite capacity edge e, set its capacity to Ae) + 25+1. Transform the new

25

circulation problem to a DCS problem, a above, and solve the DCS problem wing EK capacity ""

scaling.

The correctness of this algorithm follows from the opening remark. To estimate the efficiency,

note that in the DCS problem, every infinite capacity edge of G has multiplicity 2k+ 1 and every

vertex vj, v2 has degree constraint at most S _ 2k. Hence the first scale is trivial- no edges are

in the DOS, and the duals can be set to any values small enough so that they are dominated on all

edges. Every scale after the first has I = O(n) (recall that I is the number of increased u-values),

since the u-values of infinite capacity edges double. Hence the total time is O(n(m + n log n) log S),

implying the desired bound. I

Corollary 3.3. The directed Chinese postman problem can be solved in O(nm log n) time and

0(m) spae. -

Proof. We use the notation for the postman problem given in the Introduction. Transform the

postman problem to a circulation problem as follows: Add new vertices s and t. For each start

vertex v add edge ev with capacity indegree(v) - outdegree(v); for each end v add edge vt with

capacity outdegree(v) - indegree(v). If q is the value of a maximum flow in this graph, add edge ts

with lower bound q. (q is the cardinality of the desired set of paths P). Define the capacity of each

vertex and each original edge of G as infinite. The problem is to find a minimum cost circulation

from . to t.
The correctness of this transformation is obvious. To estimate the efficiency, first observe that

q can be found in 0(nm) time (in any network with integer capacities and maximum flow value

O(m), a maximum flow can be found in 0(nm) time IG85a).

The circulation problem can be solved in time 0(n(m+n log n) log n), by Theorem 3.6. Form

n log n this is the desired bound. If m _ n log n the desired time is achieved by any algorithm that

does 0(m) Hungarian searches. For instance the desired circulation can be found without scaling,

by repeatedly finding a minimum cost augmenting path from s to t (the number of augmentations V

is at most m). Alternatively the DCS graph for Theorem 3.6 can be modified slightly so that

the scaling algorithm does at most m augmentations, thereby achieving the desired bound in

this case too. (The idea is to define capacities so that the scaling algorithm does at most one

search per new unit of vertex capacity. Specifically, for a start vertex v, in the DCS graph define

u(l) 2k + indegree(v) - outdegvec(v), u(v2) = 2k; similarly for an end vertex or other vertex).

26

4. Concluions.

Table I shows that in terms of asymptotic estimates, many network problems can be solved

efficiently by scaling. Scaling algorithms also tend to be simple to program. For instance the

assignment algorithm consists of an outer scaling loop plus an inner loop that does a depth-first

search followed by a Dijkstra calculation. We believe that such algorithms will run efficiently in

practice. Note that in the experiments done by Bateson [Ba] the scaling algorithm of [G85a beat

the Hungarian algorithm as long as the cost of the matching could be stored in a machine integer.

Our assignment algorithm has even simpler code than JOS8a) and so should do even better.

The assignment algorithm has a processor-efficient parallel implementation. Details are given

in fGabT87b]. Also, the assignment algorithm extends to matching on general graphs. The time

bound for finding a minimum perfect matching on a general graph is O(/ncam, n) log nm log(n N)).

The algorithm is more complicated because of 'blosoms' that occur in general matching, which

compound the error due to scaling. Details are in [GabT87a].

Acknowledgments.

We thank Andrew Goldberg for sharing his ideas, which inspired this work.

2.

.. -

9.:.

.

'a.?

References.

[AHU] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Al-

gorithms, Addison-Wesley, Reading, Maw., 1974.

[Ba] C.A. Bateson, "Performance comparison of two algorithms for weighted bipartite match-

ing', M.S. Thesis, Department of Comp. Sci., University of Colorado, Boulder, Co.

1985.

[Bell R.E. Bellman, *On a muting problem,' Quart. Appl. Math 16, 1958, pp. 87-90.

JBer86] D.P. Bertsekas, 'Distributed aynchronous relaxation methods for linear network flow

problems', LIDS Report P-1606, M.I.T., Cambridge, Mas.,1986; preliminary version

in Proc. 25 th IEEE Conf on Decision and Control, December 1986.

[Ber871 D.P. Bertsekas, 'The auction algorithm: A distributed relaxation method for the as-
signment problem', LIDS Report P-1653, M.I.T., Cambridge, Mass., 1987.

[DI R.B. Dial, OAlgorithm 360: Shortest path forest with topological ordering', C. ACM

12, 1969, pp. 632-3. C.

[FJl] . Edmonds and E.L. Johnson, 'Matching, Euler tours and the Chinese Postman',

Math. Programming 5, 1973, pp. 88-124.

[EK] J. Edmonds and R.M. Karp, 'Theoretical improvements in algorithmic efficiency for

network flow problems,' J. ACM 19, 2, 1972, pp. 248-264.

(ET] S. Even and R.E. Tarjan, 'Network flow and testing graph connectivity', SIAM J.

Comput. 4, 4, 1975, pp. 507-518.

[FTJ M.L. Fredman and R.E. Tarjan, 'Fibonacci heaps and their uses in improved network

optimization algorithms', Proc. 15th Annual Symp. on Found. of Comp. Sci., 1984,

pp.338-346.

[G85a] H.N. Gabow, "Scaling algorithms for network problems', J. of Comp. and Sys. Sciences

81, 2, 1985, pp. 148-168.

[G85bl H.N. Gabow, 'A scaling algorithm for weighted matching on general graphs', Proc.

26th Annual Symp. on Foundations of Comp. Sci., 1985, pp. 90-100.

[G87] H.N. Gabow, 'Duality and parallel algorithms for graph matching', manuscript.

[GabT87aj H.N. Gabow and R.E. Tarijan, 'Faster scaling algorithms for general graph matching

problems', manuscript. lb

28

I rww V, ,or

MAI.

7.,1- FT =7 4.7 a.. TP14 P - . .s a t .t

[GabT87b] R.N. Gabow and R.E. Tarian, "Improved parallel and sequential algorithms for network

flow problems', manuscript.

IGIT1 Z. Gall and E. Tardos, 'An O(n 2(M + n log n) log n) min-coot flow algorithm', Proc.
27th Annual Simp. on Found, of Comnp. Sci., 1986, pp.1-9.

jGJ] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, W.H. Freeman and Co., San Francisco, Ca., 1979.

[GO] A.V. Goldberg, "Efficient graph algorithms for sequential and parallel computers', Ph.
D. Dissertation, Dept. of Electrical Eng. and Comp. Sci., MIT, Technical Rept.

MIT/LCS/TR.374, Cambridge, Mass., 1987.

IGoT86] A.V. Goldberg and R.E. Tarjan, 'A new approach to the maximum Hlow problem",

Proc. 18th Annual A CM Symp. an Th. of Computing, 1986, pp. 136-146.

IGoT87al A.V. Goldberg and R..E. Tarian, 'Solving minimum-cost flow problems by successive

approximation', Proc. 191h Annual A CM Symp.- on Th. of Computing, 1987, pp. 7-18.

[GoT87b] A.V'. Goldberg and ILE. Tarjan, 'Finding minimum-cost circulations by successive ap-

proximation', Technical Rept. CS-TR-100-87, Department of Comp. Sci., Princeton

University, Princeton, New Jersey, 1987.

IH) P.P. Herrmann, 'On reducibility among combinatorial problems,' Report No. TR.113,

Project MAC, MIT, Cambridge, Mass., 1973.

IRK] J. Hopcroft and R. Karp, "An n5s/2 algorithm for maximum matchings in bipartite
graphs*, SIAM J. Comnp. 2, 4, 1973, pp. 225-231.

IKSS] H.W. Kuhn, 'The Hungarian method for the assignment problem', Naval Res. Loguut.

Quart. 10, 1955, pp. 83-97.

IK561 H.W. Kuhn, 'Variants, of the Hungarian method for assignment problems", Naval Re.
Logistics Quart., 8, 1956, pp. 253-258.

ILI E.L. Lawler, Combinatorial Optimization: Networks and MatroidB, Holt, Rinehart and

Winston, New York, 1976.

fLe] D. Lee, private communication, 1987.

[PSI C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Cornplezitsi, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982.

IT831 R.E.Tarjan, Data Structures and Network Algorithms, SIAM Monograph, Philadelphia,
Pa., 1983.

= - - - -

[W) R.A. Wagner, "A shortest path algorithm for edge-sparse graphs', J. A CM 23, 1, 1976,
pp. 50-57.

.530

Strong Polynomial Bound New Scaling Bound

Assignment problem

o(n(m +nlogn)) IFT] O(,m Iog(nN))

Shortest paths (singe-source, directed graph, possibly negative lengths)

Q(nm) [Bell O(Vinm log(nN))

Minimum cost degree-constrained subgraph of a bipartite multigraph

O(U(,,+nlogn)) FT,G31 O(min{VU, n2/3./3}rnlog(uN))

fransportation problem (uncapacitated or capacitated)

O(min{U,nlogU)(m *nlogn)) IFT, EK,L] O((minlv'U, n)m +UlogU)log(nN))

Minimum cost flow
O(n(, nlogn) logn,) iGaIT O(nmlog nlog(nN)log At)

convex cost functions allowed

O(n(m + n log n) log(nM))

lower bounds only

Directed Chinese postman problem (with edge lengths)

O(,(,, +nlog n)) IFT, EJ, Le] O(nm log n)

Table I. Bounds for network problems.

Parameters:

n number of vertices U = total degree constraints

in = number of edges N = maximum cost magnitude

w f number of edges counting multiplicities M = maximum flow capacity or lower bound,

or edge multiplicity

31

a ~ ~ ~%.vV\.%**d .~k a. */(~ %'./*f w~~\ %. aN%~~----------.~

a-. = 4-- - - -. -* - - b

*

I

.et

I~.

6

~I~c
~

h~.

%:

*

*. ~.

* -.- ~

'p
* 0

* *

" *- *~* *

* S

* 0

